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Volume 89 Hydrogen Production, Separation and Purification for Energy A. Basile,

F. Dalena, J. Tong and T.N. Veziroğlu (Editors)
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Foreword

It is my pleasure and privilege to write a Foreword for this important book on
artificial intelligence (AI) techniques, and their applications in power electronics
and power systems. It is well known that the AI techniques, particularly fuzzy logic
and neural networks, have already established tremendous importance in power
electronics and power systems, among many other industrial and nonindustrial
applications. Particularly, their applications are very promising in the emerging
next generation of smart grid and renewable energy systems. Again, among all the
AI disciplines, it is expected that neural networks will have a maximum impact on
power electronics and power systems. The area of power electronics, particularly,
is very complex and multidisciplinary. The advancing frontier of power electronics
with the AI technology will be challenging to the power electronics engineers. The
book is authored by Prof. Marcelo Simoes, who is a world-renowned scientist in AI
area. I am proud to mention that Dr. Simoes initiated his pioneering AI research in
my power electronics laboratory in the University of Tennessee. It is interesting to
note that in 1997, I organized a panel discussion session on advances and trends of
power electronics in the IEEE Industrial Electronics Society Conference (IECON-
1997), where I invited him as a panelist on AI applications in power electronics. He
was the youngest panelist in such most important area. In the last 25 years, since his
doctorate degree in 1995, he has established himself as a very prominent scientist in
this area. The present book authored by Marcelo is very comprehensive. It exten-
sively reviews the state-of-the-art technologies of fuzzy logic and neural network
and their applications in power electronics and power systems. In addition, it
includes real-time modeling and simulation, hardware-in-loop testing, deep
machine learning, etc., which will be important in emerging smart grid and
renewable energy systems applications. Of course, one of the nine chapters has
been contributed by OPAL-RT engineers, who are specialized in this area. The
book will be important for university professors and other professionals, and stu-
dents who are doing research in this area. Of course, selected portions of the book
can be taught in undergraduate and graduate programs. I wish success for this book.

Dr. Bimal K. Bose, IEEE Life Fellow
Emeritus Chair Professor in Electrical Engineering

(Formerly Condra Chair of Excellence in Power Electronics)
Member, US National Academy of Engineering

Department of Electrical Engineering and Computer Science
The University of Tennessee, Knoxville



Preface

I started this book many years ago, and it has been paused on and off due so many
other professional priorities, personal matters and evolving of my life as a whole.
When I just thought that neural networks were saturated in power electronics and
power systems, I observed the rapid evolution of deep learning, at the same time the
maturity of smart-grid systems as a core in electrical engineering. I am very proud
to introduce this book to our professional community. I hope all who read it, or
have any brief consultation on any of the topics, will appreciate a solid foundation
of artificial intelligence (AI), fuzzy logic, neural networks, and deep-learning for
advancing power electronics, power systems, enhancing the integration of renew-
able energy sources in a smart-grid system.

When I graduated from Poli/USP in 1985 in Electrical Engineering, my
expertise was electronic systems, high frequency circuits, and I was just starting to
learn the basics of power electronics. Computer simulation was still based on
mainframes, electrical circuit simulation in Spice, software was written in compiled
languages, such as Pascal, C, FORTRAN. Designing and implementing a switching
power supply required me to understand analog circuits of TVs, reading application
notes of semiconductor companies, reverse engineering circuits from computers,
taking notes on a notebook to document the design, and eventually burning and
destroying many transistors and diodes during the workbench prototyping. I first
learned to use MATLAB� in an IBM PC AT in 1988, and when I joined University
of Tennessee for my Ph.D. program, I witnessed an evolution in how computer-
simulation-based design and digital signal processing (DSP)-based hardware would
enhance very complex control algorithms in real-life applications. From 1991 to
1995, I started to study, learn, and to apply fuzzy logic and neural networks in
power electronics, enhancing wind energy systems, PV solar systems, and power
quality diagnosis and energy management.

In my career, I have been writing books and publishing several papers; I saw
how power electronics evolved and became a key enabling technology for the
twenty-first century with the technology of smart-grids for the integration of
renewable energy resources. The revolution in power electronics was introduced
with solid-state power semiconductor devices in the 1950s. AI, initially on the first
generation of neural networks, started about the same time, a few years earlier.
During the 1960s, fuzzy logic was introduced by Lotfi Zadeh. With the emergence
of microprocessors and later DSP controllers, there was a widespread application of
power electronics in industrial, commercial, residential, transportation, aerospace,
military, and utility systems. From the 1990s to now, we have had the age of



industry automation, high efficiency energy systems that include modern renew-
able energy systems, integration of transmission, and distribution with bulk energy
storage, electric and hybrid vehicles, and energy efficiency improvement of elec-
trical equipment.

With the popularization of the backpropagation algorithm in 1985, a second
wave of neural network research was made possible with so many topologies and
architectures of neural networks, also many expert system shells, fuzzy logic sys-
tems for microcontrollers, and PLCS, eventually making the use of AI in power
electronics and power systems a reality.

Power electronics is the most important technology in the twenty-first century,
and our power systems, utility integration, and distribution systems became a
power-electronics-enabled power system, with added intelligence to be a smart-
grid system. In such a vision of smart grid, the role of power electronics in high-
voltage DC systems, static VAR compensators, flexible AC transmission systems,
fuel cell energy conversion systems, uninterruptible power systems, besides the
renewable energy and bulk energy storage systems, has tremendous opportunities.
In the current trend of our energy scenario, the renewable energy segment is con-
tinuously growing, and our dream of 100% renewables in the long run (with the
complete demise of fossil and nuclear energy) is genuine. Therefore, the social
impact of power electronics in our modern society is undeniable, and this book
contributes with nine specialized chapters. After a general introduction in
Chapter 1, there is a discussion on Chapter 2 of how hardware-in-the-loop, real-
time simulation, and digital twins are enabling future smart-grid applications, with
a strong need for AI. Chapters 3, 4, and 5 present everything necessary for an
engineer to develop, implement, and deploy fuzzy systems, with all sorts of engine
implementations, and how to design fuzzy logic control systems. Chapters 6 and 7
focus on feedforward neural networks and feedback, competitive and associative
neural networks, with methods, procedures, and equations, discussed in an agnostic
and scientific perspective, so the reader can adopt and adapt the discussions into
any modern computer language. Chapter 8 discuss the applications of fuzzy logic
and neural networks in power electronics and power systems.

During the twentieth century, particularly after the advent of computers and
advances in mathematical control theory, many attempts were made for augment-
ing the intelligence of computer software with further capabilities of logic, models
of uncertainty, and adaptive learning algorithms that made possible the initial
developments in neural networks in the 1950s. However, a very radical and fruitful
of such foundations was initiated by Lotfi Zadeh in 1965 with publication of his
paper “Fuzzy Sets.” In such paper, the idea of membership function with a foun-
dation on such a multivalued logic, properties, and calculus became a solid theory
and technology that bundled together thinking, vagueness, and imprecision. Every
design starts from the process of thinking, i.e., a mental creation, and people will
use their own linguistic formulation, with their own analysis and logical statements
about their ideas. Then, vagueness and imprecision are considered here as empirical
phenomena. Scientists and engineers try to remove most of the vagueness and
imprecision of the world by making clear mathematical formulation of laws of
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physics, chemistry, and the nature in general. Sometimes it is possible to have
precise mathematical models, with strong constraints on non-idealities, parameter
variation, and nonlinear behavior. However, if the system becomes complex, the
lack of ability to measure or to evaluate features, has a lack of definition of precise
modeling, in addition to many other uncertainties and incorporation of human
expertise, making almost impossible to explore such a very precise model for a
complex real-life system. Fuzzy logic and neural network became the foundation
for the newly advanced twenty-first century of smart control, smart modeling,
intelligent behavior, and AI. This book presents the basics and foundation for fuzzy
logic and neural network, with some applications in the area of energy systems,
power electronics, power systems, and power quality.

Fuzzy control has a lot of advantages when used for optimization of alternative
and renewable energy systems. The parametric fuzzy algorithm is inherently adap-
tive, because the coefficients can be altered for system tuning. Thus, a real-time
adaptive implementation of the parametric approach is feasible by dynamically
changing the linear coefficients by means of a recursive least-square algorithm
repeatedly on a recurrent basis. Adaptive versions of the rule-based approach,
changing the rule weights (Degree of Support) or the membership functions recur-
rently is possible. The disadvantage of the parametric fuzzy approach is the loss of
the linguistic formulation of output consequents, sometimes important for industrial
plant/process control environment.

Fuzzy and neuro-fuzzy techniques became efficient tools in modeling and
control applications. There are several benefits in optimizing cost effectiveness
because fuzzy logic is a methodology for handling inexact, imprecise, qualitative,
fuzzy, verbal information such as temperature, wind speed, humidity, and pressure
in a systematic and rigorous way. A neuro-fuzzy controller generates, or tunes, the
rules or membership functions of a fuzzy controller with an artificial neural net-
work approach.

For applications of alternative and renewable energy systems, it is very
important to use AI techniques because the installation costs are high, the avail-
ability of the alternative power is by its nature intermittent, and the system must be
supplemented by additional sources to supply the demand curve. There are effi-
ciency constraints, and it becomes important to optimize the efficiency of the
electric power transfer, even for relatively small incremental gains, in order to
amortize installation costs within the shortest possible time. Smart-grid systems
must be evaluated in comprehensive case studies, engineering analysis, big data-
bases, with detailed modeling, and simulation techniques.

In this third decade of the twenty-first century, we want young students and
junior engineers to become motivated by the third-wave of research in neural net-
works, i.e., big data analytics, data science, and deep learning. Chapter 9 is
extensive in discussing deep learning and big data applications in electrical power
systems. The approach is comprehensive, clear, allowing implementation in any
hardware and software. The reader will learn what is a deep-learning neural net-
work, how it can be used for classification, regression, clustering, and modeling.
How convolutional neural networks can be used for smart-grid applications, and
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how the previous paradigm of recurrent neural networks has been modernized in
the twenty-first century with long short-term memory neural networks (LSTM) and
how fuzzy parametric CMAC neural networks can also be applied for current deep-
learning AI revolution.

All the chapters review the state of the art, presenting advanced material and
application examples. The reader will become familiarized with AI, fuzzy logic,
neural networks, and deep learning in a very coherent and clear presentation. I want
to convey my sincere enthusiasm with this hopeful timeliness book in your hands. I
am very confident that this book fulfills the curiosity and eagerness for knowledge
in AI for making power systems, power electronics, renewable energy systems, and
smart grid, a legacy for generations to come in this century.

I am grateful to all my past undergraduate and graduate students, most of them
are currently working in high technology and advanced in their careers; we became
colleagues and professional fellows. I am grateful to all faculty and researchers
who have been working with me in this professional journey in the past a little more
than three decades in my life. There are so many of you, important in my life, that it
is not fair to list names, but we know each other and we support each other.

Specifically, I am very thankful to the support of Dr. Tiago D.C. Busarello who
reviewed the manuscript and gave me suggestions for improvements. I am grateful
to Alexandre Mafra who kept his professional dream in working with neural net-
works and gave me valuable feedback. To the group of colleagues and engineers in
OPAL-RT and the guest authors of Chapter 2, I show my strong appreciation and
gratitude for the collaboration, I am especially grateful to Prof. Bimal K. Bose, my
former Ph.D. adviser, who motivated me a few years ago to write this book.

I am grateful, in memoriam, to Dr. Paulo E.M. Almeida; he was my Ph.D.
student, he became a successful professor and a leader in intelligent automation.

I dedicate this book to you, reader, such a knowledge is for you to advance, for
you to make our world better, for you to make our society more prosperous. Thank
you for reading this book.

—Marcelo Godoy Simões, Ph.D., IEEE Fellow,
Professor in Electrical Power Engineering, in Smart and Flexible Power
Systems, at the University of Vaasa (Finland), in the School of Technology
and Innovations, with the Electrical Engineering Department.
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Busarello, T.D.C., Mortezaei, A., Péres, A., and Simões, M.G., 2018. Application of
the conservative power theory current decomposition in a load power-sharing
strategy among distributed energy resources. IEEE Transactions on Industry
Applications 54, 3771–3781. https://doi.org/10.1109/TIA.2018.2820641.

Caruso, P., Dumbacher, D., and Grieves, M., 2010. Product lifecycle management
and the quest for sustainable space exploration, in: Presented at the AIAA
SPACE 2010 Conference & Exposition, American Institute of Aeronautics
and Astronautics, Anaheim, CA, USA. https://doi.org/10.2514/6.2010-8628.

de Carvalho, R.S., Sen, P.K., Velaga, Y.N., Ramos, L.F., and Canha, L.N., 2018.
Communication system design for an advanced metering infrastructure.
Sensors 18, 3734. https://doi.org/10.3390/s18113734.

Chakrabarti, S., Kyriakides, E., Bi, T., Cai, D., and Terzija, V., 2009.
Measurements get together. IEEE Power and Energy Magazine 7, 41–49.
https://doi.org/10.1109/MPE.2008.930657.

Chakraborty, S., 2013. Modular Power Electronics, in: Chakraborty, S., Simões, M.
G., and Kramer, W.E. (Eds.), Power Electronics for Renewable and Distributed
Energy Systems: A Sourcebook of Topologies, Control and Integration, Green
Energy and Technology. Springer, London, pp. 429–467. https://doi.org/
10.1007/978-1-4471-5104-3_11.

Bibliography 231



Chakraborty, S., Hoke, A., and Lundstrom, B., 2015. Evaluation of multiple
inverter volt-VAR control interactions with realistic grid impedances, in:
Presented at the 2015 IEEE Power Energy Society General Meeting, pp. 1–5.
https://doi.org/10.1109/PESGM.2015.7285795.

Chakraborty, S., Nelson, A., and Hoke, A., 2016. Power hardware-in-the-loop
testing of multiple photovoltaic inverters’ volt-var control with real-time grid
model, in: Presented at the 2016 IEEE Power Energy Society Innovative
Smart Grid Technologies Conference (ISGT), pp. 1–5. https://doi.org/10.
1109/ISGT.2016.7781160.

Chang, W.L., 2015. NIST Big Data Interoperability Framework: Volume 1,
Definitions. https://doi.org/10.6028/nist.sp.1500-1.

Chekired, F., Mahrane, A., Samara, Z., Chikh, M., Guenounou, A., and Meflah, A.,
2017. Fuzzy logic energy management for a photovoltaic solar home. Energy
Procedia 134, 723–730. Sustainability in Energy and Buildings 2017:
Proceedings of the Ninth KES International Conference, Chania, Greece, 5–7
July 2017. https://doi.org/10.1016/j.egypro.2017.09.566.

CYME Power Engineering Software [WWW Document], n.d. http://www.cyme.
com/software/#ind.

Dahl, G.E., Sainath, T.N., and Hinton, G.E., 2013. Improving deep neural networks
for LVCSR using rectified linear units and dropout, in: Presented at the 2013
IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 8609–8613. https://doi.org/10.1109/ICASSP.2013.6639346.

DARPA Neural Network Study (U.S.), Widrow, Morrow, and Gschwendtner,
1988. DARPA Neural Network Study. AFCEA Intl.

Dennetière, S., Saad, H., Clerc, B., and Mahseredjian, J., 2016. Setup and perfor-
mances of the real-time simulation platform connected to the INELFE con-
trol system. Electric Power Systems Research 138, 180–187. Special Issue:
Papers from the 11th International Conference on Power Systems Transients
(IPST). https://doi.org/10.1016/j.epsr.2016.03.008.

de Souza, W.A., Garcia, F.D., Marafão, F.P., da Silva, L.C.P., and Simões, M.G.,
2019. Load disaggregation using microscopic power features and pattern
recognition. Energies 12, 2641. https://doi.org/10.3390/en12142641.

Dommel, H.W., 1969. Digital computer solution of electromagnetic transients in
single-and multiphase networks. IEEE Transactions on Power Apparatus and
Systems PAS-88, 388–399. https://doi.org/10.1109/TPAS.1969.292459.

Dommel, H.W., 1997. Techniques for analyzing electromagnetic transients. IEEE
Computer Applications in Power 10, 18–21. https://doi.org/10.1109/67.
595285.

Dufour, C., Mahseredjian, J., Belanger, J., and Naredo, J.L., 2010. An Advanced
Real-Time Electro-Magnetic Simulator for power systems with a simulta-
neous state-space nodal solver, in: Presented at the 2010 IEEE/PES
Transmission and Distribution Conference and Exposition: Latin America
(T&D-LA), IEEE, Sao Paulo, Brazil, pp. 349–358. https://doi.org/10.1109/
TDC-LA.2010.5762905.

232 Artificial intelligence for smarter power systems



Dufour, C., Mahseredjian, J., and Bélanger, J., 2011. A combined state-space
nodal method for the simulation of power system transients. IEEE
Transactions on Power Delivery 26, 928–935. https://doi.org/10.1109/
TPWRD.2010.2090364.

Dufour, C., Saad, H., Mahseredjian, J., and Bélanger, J., 2013. Custom-coded
models in the state space nodal solver of ARTEMiS, in: Presented at the
International Conference on Power System Transients (IPST), p. 6.

Dufour, C., Wei Li, Xiao, X., Paquin, J.-N., and Bélanger, J., 2017. Fault studies
of MMC-HVDC links using FPGA and CPU on a real-time simulator
with iteration capability, in: Presented at the 2017 11th IEEE International
Conference on Compatibility, Power Electronics and Power Engineering
(CPE-POWERENG), pp. 550–555. https://doi.org/10.1109/CPE.2017.7915231.

Dufour, C., Palaniappan, K., and Seibel, B.J., 2020. Hardware-in-the-Loop
Simulation of High-Power Modular Converters and Drives, in: Zamboni,
W. and Petrone, G. (Eds.), ELECTRIMACS 2019, Lecture Notes in
Electrical Engineering. Springer International Publishing, Cham, pp. 17–29.
https://doi.org/10.1007/978-3-030-37161-6_2.

Eguiluz, L.I., Manana, M., and Lavandero, J.C., 2000. Disturbance classification
based on the geometrical properties of signal phase-space representation, in:
Proceedings (Cat. No. 00EX409). Presented at the PowerCon 2000. 2000
International Conference on Power System Technology. Proceedings (Cat.
No. 00EX409), vol. 3, pp. 1601–1604. https://doi.org/10.1109/ICPST.2000.
898211.

Elman, J.L., 1990. Finding structure in time. Cognitive Science 14, 179–211.
ETAP | Electrical Power System Analysis Software | Power Management System

[WWW Document], n.d. https://etap.com/.
Farret, F.A., 2013. Photovoltaic Power Electronics, in: Chakraborty, S., Simões, M.G.,

and Kramer, W.E. (Eds.), Power Electronics for Renewable and Distributed
Energy Systems: A Sourcebook of Topologies, Control and Integration, Green
Energy and Technology. Springer, London, pp. 61–109. https://doi.org/10.1007/
978-1-4471-5104-3_3.

Fossati, J.P., Galarza, A., Martı́n-Villate, A., Echeverrı́a, J.M., and Fontán, L.,
2015. Optimal scheduling of a microgrid with a fuzzy logic controlled sto-
rage system. International Journal of Electrical Power & Energy Systems 68,
61–70. https://doi.org/10.1016/j.ijepes.2014.12.032.

Fukushima, K., Miyake, S., and Ito, T., 1983. Neocognitron: A neural network
model for a mechanism of visual pattern recognition. IEEE Transactions on
Systems, Man, and Cybernetics 826–834.

Kosko, B., 1996. Fuzzy Engineering. Prentice Hall. /content/one-dot-com/one-dot-
com/us/en/higher-education/program.html (accessed 7.15.20).

Fuzzy neural network based estimation of power electronic waveforms [WWW
Document], n.d. SOBRAEP. https://sobraep.org.br/artigo/fuzzy-neural-net-
work-based-estimation-of-power-electronic-waveforms/ (accessed 8.5.20).

Bibliography 233



Gadde, P.H., Biswal, M., Brahma, S., and Cao, H., 2016. Efficient compression of
PMU data in WAMS. IEEE Transactions on Smart Grid 7, 2406–2413.
https://doi.org/10.1109/TSG.2016.2536718.

Gagnon, R., Gilbert, T., Larose, C., Brochu, J., Sybille, G., and Fecteau, M., 2010.
Large-scale real-time simulation of wind power plants into Hydro-Quebec
power system (Conference) | ETDEWEB, in: Presented at the International
workshop on large-scale integration of wind power into power systems as
well as on transmission networks for offshore wind power plants, pp. 73–80.

Gausemeier, J. and Moehringer, S., 2002. VDI 2206—A new guideline for the
design of mechatronic systems. IFAC Proceedings Volumes 35, 785–790.
https://doi.org/10.1016/S1474-6670(17)34035-1.

Gavrilas, M., 2009. Recent Advances and Applications of Synchronized Phasor
Measurements in Power Systems MIHAI GAVRILAS Power Systems.

Gers, F.A., Schmidhuber, J., and Cummins, F., 1999. Learning to forget: Continual
prediction with LSTM. Neural Computation 12, 2451–2471.

Ghahremani, E., Heniche-Oussedik, A., Perron, M., Racine, M., Landry, S., and
Akremi, H., 2019. A detailed presentation of an innovative local and
wide-area special protection scheme to avoid voltage collapse: From proof
of concept to grid implementation. IEEE Transactions on Smart Grid 10,
5196–5211. https://doi.org/10.1109/TSG.2018.2878980.

Simões, M.G. and Bose, B.K., 1995. Fuzzy neural network based estimation of
power electronic waveforms, in: Presented at the III Congresso Brasileiro de
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